STEM Success Center

Introduction to Digital Circuits 2

Truth Table:

- The operations of a logic circuit can be defined by what is called a truth table.
- A truth table lists all the possible combinations of the input variables and shows the relationship between the input variables and the resulting output.
- They grow exponentially in size with the number of variables. A truth table with three input variables has eight rows, 2^{3} since there are eight possible valuations of these variables. For four-input variables the truth table has 16 rows, 2^{4}, and so on.

$\boldsymbol{x} \mathbf{1}$	$\boldsymbol{x 2}$	$\boldsymbol{x} \mathbf{1}^{*} \boldsymbol{x} \mathbf{2}$	$\boldsymbol{x} \mathbf{+} \mathbf{x} \mathbf{2}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Types of Logic Gates:

AND Gate
OR Gate
NOT Gate
x1
x2
$x 1 . x 2$
x1
x2
$x 1+x 2$
x^{\prime}

Boolean Algebra:

- To simplify a function and design a less costly circuit and more efficient circuit we use Boolean Algebra.

If assuming Boolean algebra only takes one of two values, 0 or 1 , then the following is true:
1a)

$$
0 * 0=0
$$

1b) $1+1=1$
2a)
1 *1 = 1
2b) $0+0=0$
3a)

$$
0 * 1=1 * 0=0
$$

3b) $1+0=0+1=1$
4a)
If $x=0$, then $x=1$
4b) If $x=1$, then $x=0$

If assuming Boolean algebra takes one or more variables, then the following terms are true:

1a)	$x+0=x$	1b)	$x .1=x$
2a)	$x+x^{\prime}=1$	2b)	$x . x^{\prime}=0$
$3 a)$	$x+x=x$	$3 b)$	$x . x=x$
$4 a)$	$x+1=1$	$4 b)$	$x .0=0$

5a) $\left(x^{\prime}\right)^{\prime}=x$

Commutative: a) $x+y=y+x$

$$
\text { b) } x y=y x
$$

Associative:
a) $x+(y+z)=(x+y)+z$
b) $x(y z)=(x y) z$

Distributive:
a) $x(y+z)=x y+x z$
b) $x+y z=(x+y) \cdot(x+z)$

DeMorgan:
a) $(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$
b) $(x y)^{\prime}=x^{\prime}+y^{\prime}$

Absorption:

$$
\text { a) } \quad x+x y=x
$$

$$
\text { b) } x(x+y)=x
$$

DeMorgan's Law:

- The dual of an expression is obtained by replacing all addition operators with multiplication operators, and vice versa, and by replacing all 0 s with 1 s , and vice versa.
(DeMorgan law)
- Example:

Find the complement of the functions F1 $=x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z$ and $F 2=x\left(y^{\prime} z^{\prime}+y z\right)$ by applying DeMorgan's theorem as many times as necessarily

$$
\begin{aligned}
\mathrm{F} 1^{\prime} & =\left(x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z\right)^{\prime} \\
& =\left(x^{\prime} y z^{\prime}\right)^{\prime}\left(x^{\prime} y^{\prime} z\right)^{\prime} \\
& =\left(x+y^{\prime}+z\right)\left(x+y+z^{\prime}\right) \\
F 2^{\prime} & =\left[x\left(y^{\prime} z^{\prime}+y z\right)\right]^{\prime} \\
& =x^{\prime}+\left(y^{\prime} z^{\prime}+y z\right)^{\prime} \\
& =x^{\prime}+\left(y^{\prime} z^{\prime}\right)^{\prime} .(y z)^{\prime} \\
& =x^{\prime}+(y+z)\left(y^{\prime}+z^{\prime}\right)
\end{aligned}
$$

STEM Success Center

Procedures to represent a function in Sum of minterms and product of maxterms:

- To find the sum of product of a given function from truth table (SoP):

1. Make the truth table for the function
2. Look at those rows that function is 1
3. Write down the corresponding product terms and sum them together to find sum of minterms

- To find the product of sums (PoS):

1. From the truth table for the function, f
2. Find the SoP of the complement of the function, f^{\prime} (use the terms whose functional values are 0)
3. find out $\left(f^{\prime}\right)^{\prime}$ which will result in f but with product of maxterms

Example of SoP and PoS:

Given the function $f=A B+A^{\prime} C$, find its Representation in sum of minterm and product of maxterm.

1. Make the truth table for function by putting the value of function to 1 for those terms that $A B=1$ or $A^{\prime} C=1$
2. Finding the sum of minterms form of function:
$f=A^{\prime} B^{\prime} C+A^{\prime} B C+A B C^{\prime}+A B C$
3. Find the complement of function by summing the minterms that are 0 in the function.
$f^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B^{\prime} C$
4. Complement \mathbf{f}^{\prime} one more time and the result would be \mathbf{f} in terms of Product of maxterm

$$
\left(f^{\prime}\right)^{\prime}=f=
$$

$A B C$	$A B$	$A^{\prime} C$	f
000	0	0	0
001	0	1	1
010	0	0	0
011	0	1	1
100	0	0	0
101	0	0	0
110	0	0	1
111	1	0	1

$(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)\left(A^{\prime}+B+C\right)$

